Analytical geometry

Introduction

The branch of mathematics where algebraic methods are employed for solving problems in geometry is known as analytical geometry. It is sometimes called Cartesian Geometry.

Let $X^{\prime} O X$ and $\mathrm{Y}^{\prime} O Y$ be two perpendicular straight lines intersecting at the point O . The fixed point O is called origin. The horizontal line $X^{\prime} O X$ is known as X-axis and the vertical line Y'OY be Y-axis. These two axes divide the entire plane into four parts known as Quadrants.

All the values right of the origin along the X-axis are positive and all the values left of the origin along the X - axis are negative. Similarly all the values above the origin along Y - axis are positive and below the origin are negative.

Let P be any point in the plane. Draw $P N$ perpendicular to X-axis. ON and PN are called X and Y co-ordinates of P respectively and is written as $P(X, Y)$. In particular the origin O has co-ordinates $(0,0)$ and any point on the X-axis has its Y co-ordinate as zero and any point on the Y -axis has its X -co-ordinates as zero.

Straight lines

A straight line is the minimum distance between any two points.

Slope

The slope of the line is the tangent of the angle made by the line with positive direction of X - axis measured in the anticlockwise direction.

let the line $A B$ makes an angle θ with the positive direction of X-axis as in the figure.
The angle θ is called the angle of inclination and $\tan \theta$ is slope of the line or gradient of the line. The slope of the line is denoted by m . i.e., slope $=\mathrm{m}=\tan \theta$

Slope $=\mathrm{m}=\tan \theta \quad$ Slope $=\mathrm{m}=\tan \theta \quad$ Slope is negative \quad Slope is positive Note
(i) The slope of any line parallel to X axis is zero.
(ii) Slope of any line parallel to Y axis is infinity
(iii) The slope of the line joining two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is

$$
\text { Slope }=m=\tan \theta=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

(iv) When two or more lines are parallel then their slopes are equal
(v) When two lines are perpendicular then the product of their slopes is -1

$$
\text { i.e., } m_{1} m_{2}=-1
$$

Equation of a straight line

There are several forms of a straight line. They are,

1. Slope - intercept form

Let the given line meet y-axis at $B(0, c)$. We call $O B$ as Y - intercept. Let A be any point on the given line. Draw $A M$ perpendicular to $O X$ and $B D \perp A M$. Let this line make an angle θ with X axis. Then the slope,

Hence, the equation of a line with slope ' m ' and y - intercept ' c ' is given by

$$
y=m x+c
$$

Note:

(i) Any line passing through the origin does not cut y - axis ($c=0$) i.e., $y-$ intercept is zero. Therefore its equation is $\mathrm{y}=\mathrm{mx}$
(ii) Any line which is parallel to x - axis has slope equal to zero. Therefore its equation is $y=c($ Because $m=0)$
(iii) Any line perpendicular to x-axis, ie which is parallel to y-axis at a distance of K units from the origin is given by $x=k$.

Example 1: Find the equation of a straight line whose
(i) Slope is four and y intercept is -3
(ii) Inclination is 30° and y intercept is 5

Solution: (i) Slope (m) = 4
Y intercept (c) $=-3$
Equation of a line is $y=m x+c$

$$
Y=4 x-3
$$

Equation of a line is $4 x-y-3=0$
(ii) $\theta=30^{\circ}$, y intercept $=5$

$$
\begin{aligned}
\text { Slope } & =\tan \theta \\
\mathrm{m} & =\tan 30^{\circ}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Equation of a line is $y=m x+c$

$$
\begin{aligned}
& Y=\frac{1}{\sqrt{3}} x+5 \\
& \sqrt{3} y=x+5 \sqrt{3}
\end{aligned}
$$

Equation of a line is $x-\sqrt{3} y+5 \sqrt{3}=0$
Example 2: Calculate the slope and y intercept of the line $2 x-3 y+1=0$
Solution: $2 x-3 y+1=0$

$$
\begin{aligned}
& 3 y=2 x+1 \\
& y=\frac{2 x}{3}+\frac{1}{3}
\end{aligned}
$$

Comparing with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, we get

$$
\begin{aligned}
& \mathrm{m}=\frac{2}{3}, \mathrm{c}=\frac{1}{3} \\
& \text { Slope }=\frac{2}{3} ; y \text { intercept }=\frac{1}{3}
\end{aligned}
$$

2. Slope - one point form

Let the line $A B$ make an angle θ with x - axis as shown in the figure and pass through the point $P\left(x_{1}, y_{1}\right)$. If (x, y) represents a point other than the point $\left(x_{1}, y_{1}\right)$, then $m=\frac{y-y_{1}}{x-x_{1}}$ where m is the slope of the line or $\quad y-y_{1}=m\left(x-x_{1}\right)$.

Hence the equation of a line passing through a point (x_{1}, y_{1}) and having slope ' m ' is
$y-y_{1}=m\left(x-x_{1}\right)$.

Example: Find the equation of a straight line passing through ($-4,5$) and having slope $\frac{2}{3}$

Solution: Slope $=-\frac{2}{3}$
Point (-4,5)
Equation of the line is $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& y-5=-\frac{2}{3}(x+4) \\
& 3 y-15=-2 x-8
\end{aligned}
$$

\therefore Equation of a line is $2 \mathrm{x}+3 \mathrm{y}-7=0$

3. Two points form

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ be any two points on the given line AB . We know, the slope, $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

We have the slope-point form of a line as

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Substituting the value of m in the above equation we get,

Hence, the equation of a line passing through two points is given by

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

Example: Find the equation of the straight line passing through the points $(3,6)$ and $(-$ $2,5)$.

Solution : Equation of the line is $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
\frac{y-6}{5-6} & =\frac{x-3}{-2-3} \\
\frac{y-6}{-1} & =\frac{x-3}{-5} \\
5 y-30 & =x-3 \\
x-5 y-3+30 & =0
\end{aligned}
$$

Equation of the line is $x-5 y+27=0$

4. Intercept form

Let $A B$ represent the given line which intersects X - axis at $A(a, 0)$ and Y - axis at $B(0, b)$. We call $O A$ and $O B$ respectively as x and y intercepts of the line.

The two points form of the equation is given by

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

Substituting $(a, 0)$ for $\left(x_{1}, y_{1}\right)$ and $(0, b)$ for $\left(x_{2}, y_{2}\right)$, we get the equation as

$$
\frac{y-0}{b-0}=\frac{x-a}{0-a}
$$

ie $\frac{y}{b}=\frac{x-a}{-a}$

$$
\frac{y}{b}=\frac{x}{-a}-\frac{a}{-a}
$$

Thus, $\quad \frac{y}{b}=\frac{-x}{a}+1$

$$
\therefore \frac{x}{a}+\frac{y}{b}=1
$$

Hence, the equation of a line having x-intercept ' a ' and y-intercept ' b ' is given by $\frac{x}{a}+\frac{y}{b}=1$

Example: Find the intercepts cut off by the line $2 x-3 y+5=0$ on the axes.

Solution

$$
\begin{gathered}
\mathrm{x}-\text { intercept: put } \mathrm{y}=0 \\
\therefore 2 \mathrm{x}+5=0 \\
\mathrm{x}=\frac{-5}{2} \text { This is the } \mathrm{x}-\text { intercept } \\
\mathrm{y}-\text { intercept: } P \text { Put } \mathrm{x}=0 \\
-3 \mathrm{y}+5=0 \\
\therefore \mathrm{y}=\frac{5}{3} \text { This is the } \mathrm{y}-\text { intercept }
\end{gathered}
$$

Example : Give the mathematical equation of the supply function of a commodity such that the quantity supplied is zero when the price is Rs. 5 or below and it increase continuously at the constant rate of 10 units for each one rupee rise in price above Rs.5.

Solution

$$
A(0,5) \quad B(10,6) \quad C(20,7)
$$

Point B is $(10,6)$
Point C is $(20,7)$
Equation of straight line joining two points is

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

$$
\begin{aligned}
& \frac{y-6}{7-6}=\frac{x-10}{20-10} \\
& \frac{y-6}{1}=\frac{x-10}{10} \\
& 10(y-6)=x-10 \\
& 10 y-60=x-10 \\
& x-10 y-50=0
\end{aligned}
$$

Note

The four equations we have obtained are all first degree equations in x and y. On the other hand it can be shown that the general first degree equation in x and y always represents a straight line. Hence we can take general equation of a straight line as ax + $\mathrm{by}+\mathrm{c}=0$ with at least one of a or b different from c . Further, this gives by $=-\mathrm{ax}-\mathrm{c}$

$$
\text { i.e. } \quad y=\frac{-a x}{b}-\frac{c}{b}
$$

Now, comparing this with the equation $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, we get
slope $=\mathrm{m}=\frac{-a}{b}=-\left[\frac{\text { coefficient of } x}{\text { coefficient of } y}\right]$

